Unpacking the Mystery of Hydrogen Bonding

L26 IMFs P4. Hydrogen Bonding

Estimated read time: 1:20

    Learn to use AI like a Pro

    Get the latest AI workflows to boost your productivity and business performance, delivered weekly by expert consultants. Enjoy step-by-step guides, weekly Q&A sessions, and full access to our AI workflow archive.

    Canva Logo
    Claude AI Logo
    Google Gemini Logo
    HeyGen Logo
    Hugging Face Logo
    Microsoft Logo
    OpenAI Logo
    Zapier Logo
    Canva Logo
    Claude AI Logo
    Google Gemini Logo
    HeyGen Logo
    Hugging Face Logo
    Microsoft Logo
    OpenAI Logo
    Zapier Logo

    Summary

    This video by Fogline Academy delves into the concept of hydrogen bonding, a special type of intermolecular force (IMF). It explains how hydrogen bonds lead to unusually high boiling points for compounds like NH3, HF, and H2O due to strong molecular attractions. The video details the role of hydrogen's single electron and proton, creating what can be likened to a 'naked proton' when bonded with electronegative elements such as nitrogen, oxygen, or fluorine. This results in strong dipole-dipole attractions. The significance of hydrogen bonding in organic chemistry and biochemistry, particularly in solubility and the physical properties of water, is also discussed.

      Highlights

      • Hydrogen bonds are dipole-dipole attractions involving hydrogen with electronegative atoms like N, O, and F. 🔍
      • Water, due to hydrogen bonding, has a high boiling point, high specific heat, and low ice density. 🧊
      • Molecules containing NH or OH can form extensive hydrogen bonds, impacting solubility and physical states. 🌊

      Key Takeaways

      • Hydrogen bonding leads to high boiling points for NH3, HF, and H2O. 🌡️
      • A 'naked proton' effect occurs in hydrogen bonding when hydrogen bonds with electronegative elements. 💡
      • These bonds create strong dipole-dipole attractions between molecules. 🔗
      • Hydrogen bonding is crucial in organic chemistry and biochemistry. 🧬
      • Water's unique properties, like its high boiling point and ice floating, are due to these interactions. 💧

      Overview

      The video kicks off by examining boiling points of hydrogen-containing compounds, exploring anomalies for NH3, HF, and H2O. The concept of hydrogen bonding explains these anomalies, highlighting its role in creating strong molecular attractions that elevate boiling points.

        Fascinatingly, when hydrogen bonds with electronegative atoms like N, O, or F, the shift of the electron cloud leaves a 'naked proton', resulting in a positive charge that attracts other electronegative atoms strongly, forming hydrogen bonds. This is particularly crucial in many organic molecules and biochemical processes, influencing their behavior and interactions.

          The significance of hydrogen bonding is seen vividly in water's properties. It causes water's high boiling point, and specific heat, and allows ice to float due to its structured yet expansive ice lattice. These properties are pivotal in both daily life and various scientific disciplines, emphasizing the essential nature of hydrogen bonding.

            Chapters

            • 00:00 - 00:30: Introduction to Hydrogen Bonding The chapter introduces hydrogen bonding, a type of intermolecular force (IMF). It starts with analyzing a graph showing the boiling points of simple hydrogen-containing compounds. Notably, these compounds involve nonmetals located in the upper right of the periodic table. The discussion hints at the unique properties and behaviors associated with hydrogen bonds, setting the stage for a deeper exploration of this concept in relation to other IMFs.
            • 00:30 - 03:00: Boiling Point Trends for Hydrogen Compounds The chapter discusses the trends in boiling points for hydrogen compounds across a periodic table series, highlighting the connection between elements in the same column. It uses CH4 as a reference point, noting that SiH4, similar to CH4 but with silicon, has a higher boiling point. The trend continues with germanium below silicon.
            • 03:00 - 04:00: Unexpected Boiling Points of NH3, HF, and H2O The chapter discusses the unexpected boiling points of NH3, HF, and H2O while making a comparison to other trends observed in the periodic table. Typically, as we move down a column of the periodic table, the central atom becomes larger with a higher molecular weight and a larger electron cloud. This leads to stronger dispersion or induced dipole attractions, resulting in higher boiling points for those elements or compounds lower in the column.
            • 04:00 - 07:00: Mechanism of Hydrogen Bonding This chapter delves into the mechanisms of hydrogen bonding, explaining how these bonds form between molecules and influence properties like boiling points. It highlights comparisons between elements in various groups, such as phosphorus, arsenic, and antimony; sulfur, selenium, and tellurium; and the halogens - chlorine, bromine, and iodine - emphasizing how these bonds affect their boiling points. The discussion provides a clear understanding of the structural factors contributing to the strength and implications of hydrogen bonding in different molecular contexts.
            • 07:00 - 09:00: Hydrogen Bonding in Organic Compounds The chapter 'Hydrogen Bonding in Organic Compounds' begins by discussing trends in atomic size and boiling points as you move down the periodic table. It highlights that as you go down a column, the atoms get larger, and the boiling points increase. However, there is a special consideration for the elements nitrogen, oxygen, and fluorine, which have been intentionally left off from this trend analysis in the discussion. The chapter likely delves into how the unique properties of these elements affect hydrogen bonding in organic compounds.
            • 09:00 - 12:30: Importance of Hydrogen Bonding in Water The chapter 'Importance of Hydrogen Bonding in Water' discusses the unusually high boiling points of certain compounds such as NH3 (ammonia), HF (hydrogen fluoride), and H2O (water). It highlights that these boiling points are significantly higher than those of the elements immediately below them in the periodic table. This anomaly is attributed to the phenomenon of hydrogen bonding, which plays a crucial role in this characteristic behavior.

            L26 IMFs P4. Hydrogen Bonding Transcription

            • 00:00 - 00:30 So in this video, we're gonna talk about a special  type of IMF known as hydrogen bonding. So a good   way to introduce that is to take a look at the  graph shown here, where we are looking at the   boiling points of some simple hydrogen-containing  compounds, and if you look carefully at the list,   you'll notice that these are all the various  nonmetals that are shown up in the upper right
            • 00:30 - 01:00 of the periodic table and the ones that are in  the same column are connected with lines. So,   for example, if we look at this bottom jagged  line here, we see that CH4 is the compound in   that series with the lowest boiling point.  Silicon, of course, is right below carbon,   so SiH4 would look very similar to CH4,  but with the silicon in the center,   and we see that it has a higher boiling  point germanium is below silicon has a
            • 01:00 - 01:30 higher boiling point still and tin Sn below  germanium once again. And so, of course,   that follows the trend that we expect as we move  down the column in the periodic table that center   atom is larger, it has a higher molecular  weight and also has a larger electron cloud,   and so, of course, those dispersion or  induced dipole attractions get stronger
            • 01:30 - 02:00 between molecules, and so we expect them to  have higher boiling points. Now, if we look   at the other three jagged lines, we see that they  are similarly to the other three columns we have,   the one for phosphorus arsenic and antimony Sb.  We have the one for sulfur selenium and tellurium,   and we have the one for chlorine bromine and  iodine, the halogens, and in all of these cases,
            • 02:00 - 02:30 they all follow the trend that's expected, which  is as you go down the column, atoms get larger   boiling points go up. But you'll notice that  in those last three columns, we've left off the   elements that are at the top of the list. That is  nitrogen oxygen and fluorine, and that's because
            • 02:30 - 03:00 if we look at the boiling points for the compounds  with those elements, they are much much higher   than we would expect. So, instead of being lower  than the next element below them, they are higher,   and so, of course, here we're talking about  compounds NH3, ammonia, HF, hydrogen fluoride, and   H2O water, and we see that they have unexpectedly  high boiling points. And so obviously, they must
            • 03:00 - 03:30 have very, very strong attractions between  molecules, much stronger than we would predict   based on their molecular weights. So the question  is, why is that? And the answer to that question   is hydrogen bonding. So what is hydrogen bonding?  Well, it's essentially a dipole-dipole attraction,   but it's a special form of dipole-dipole  attraction that essentially involves the   presence of hydrogen, and one of the things that's  important to remember about hydrogen is that
            • 03:30 - 04:00 hydrogen has only one proton in the center and  one electron around that proton. And so when the   electron cloud of that hydrogen atom is shifted  because it's bonded with a very electronegative   atom like nitrogen, oxygen, or fluorine, and if  that electron cloud is shifted asymmetrically in
            • 04:00 - 04:30 that bond, it essentially leaves behind what you  might call a naked proton. That is, the hydrogen   side of that bond will appear very, very positive  because you have that proton without much electron   density next to it. And as a result of that, if  that relatively naked proton that hydrogen is now
            • 04:30 - 05:00 adjacent or near another molecule where you have  this highly electronegative atom like in nitrogen,   oxygen, or fluorine, you get a very strong  dipole-dipole attraction between those two   different molecules. And so essentially,  anytime you have H bonded to N, O, or F,
            • 05:00 - 05:30 you're going to end up with this situation,  and so you end up with what we call hydrogen   bonding interactions. Now it's probably worth  pointing out that fluorine only forms one bond,   so if H is connected to F, there are no other  bonds on the fluorine, and so really, there is
            • 05:30 - 06:00 only one example of a compound that has HF bonds,  and that is HF itself. Whereas we talk about, say,   oxygen, oxygen forms two bonds, and so although  you might have hydrogen connected to oxygen that
            • 06:00 - 06:30 oxygen could be connected to an infinite number of  other things. And in fact, we've seen this in our   organic chemistry because, in fact, every alcohol,  for example, has OH connected to a carbon chain,   and the rest of the carbon chain could be almost  anything, and so in the case of H connected to   O there are lots of examples of hydrogen bonding  interactions between different molecules that have
            • 06:30 - 07:00 OH in them, and so we see this a lot in organic  compounds. Similarly, with H connected to N here,   we have a situation where nitrogen forms  three bonds, and so when H is connected to N there are two other things that could be  connected to that nitrogen, and once again,   there's an almost infinite number of possibilities  of molecules that have HN in them, and so there
            • 07:00 - 07:30 are lots and lots of examples of hydrogen bonding  interactions in organic molecules for instance   that have NH in them. So, for example, the amines  all have the possibility of hydrogen bonding   interactions as well as the amides. And it turns  out that hydrogen bonding interactions like this
            • 07:30 - 08:00 play a very important role in a lot of organic and  biochemistry and things like solubility of various   substances in water, so let's say alcohols like  methanol are very soluble in water, and that's   because they can engage in these hydrogen-bonding  interactions the OH on the alcohol interacting   with the water molecule and being attracted. And  in fact, we might wonder why in that graph we saw
            • 08:00 - 08:30 earlier that water was, in fact, higher up on the  list than hydrogen fluoride or ammonia even though   HF has a more polar bond, so why is it that the  boiling point is so high for water, well it turns   out that in the case of water not only do you have  a very strong hydrogen-bonding interaction but   because water has two OH bonds and the oxygen has  two lone pairs on it, it brings up the possibility
            • 08:30 - 09:00 for multi multiple hydrogen-bonding interactions  per molecule. In fact, if you can slow the water   molecules down enough, you can theoretically get  up to four hydrogen-bonding interactions per water   molecule if they were in fixed positions, and in  fact, that's what we see if you freeze water and
            • 09:00 - 09:30 get it into the solid-state, and so in ice, you  have the water molecules arranged in this very   precise arrangement that allows this maximum of  four hydrogen-bonding interactions per molecule   and that in fact establishes this structure we've  talked about previously where it's a relatively
            • 09:30 - 10:00 open not a very efficient compact space that  results in water having or sorry ice having   a lower density than liquid water and allowing  ice to float in liquid water which is somewhat   unusual and that's because of this arrangement  that maximizes hydrogen bonding interactions.   And in addition to that, the fact that water  has all of these hydrogen-bonding interactions   means that it takes a lot of energy to pull water  molecules apart from each other, and we see that
            • 10:00 - 10:30 in water's physical properties, it has unusually  high boiling and melting points, it has very high   specific heat capacity if you remember that's  the amount of energy that it takes to raise the   temperature of something and it has a very  high heat of vaporization something we'll   be revisiting soon the energy that it takes  to turn something from a liquid into a gas.